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Risk Premia and the VIX Term Structure

Travis L. Johnson*

Abstract

The shape of the Chicago Board Options Exchange Volatility Index (VIX) term structure
conveys information about the price of variance risk rather than expected changes in the
VIX, arejection of the expectations hypothesis. The second principal component, SLOPE,
summarizes nearly all this information, predicting the excess returns of synthetic Standard
& Poor’s (S&P) 500 variance swaps, VIX futures, and S&P 500 straddles for all maturities
and to the exclusion of the rest of the term structure. SLOPE’s predictability is incremental
to other proxies for the conditional variance risk premia, economically significant, and
inconsistent with standard asset pricing models.

I. Introduction

The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), the
most widely followed index of market volatility, is an estimate of Standard &
Poor’s (S&P) 500 return volatility over the next month derived from S&P 500
option prices. This estimate reflects both the conditional expectation of future
S&P 500 volatility and a risk premium inherited from the options it is based on.
Previous papers show that options are priced as if volatility were higher than it
actually is, indicating a negative variance risk premium (see Coval and Shumway
(2001), Bakshi and Kapadia (2003), and Bakshi and Madan (2006)). As a result,
the VIX systematically overestimates realized volatility, and assets with positive
variance risk exposure earn negative abnormal returns.

I follow the methodology used to compute the VIX to form the VIX term
structure, estimates of annualized S&P 500 return volatility over the next 1,
2, 3, 6,9, and 12 months. Just as the VIX is composed of both conditional
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volatility expectations and a risk premium, the shape of the VIX term struc-
ture reflects both the expected path of future return volatility and different risk
premia associated with variance risk at different maturities. For example, there
are two potentially complementary explanations for a downward-sloping VIX
term structure: Markets expect return variance to decline, and exposure to short-
term variance risk commands a larger risk premium than exposure to long-term
variance risk.

In this article, I estimate the extent to which time variations in the shape of
the VIX term structure reflect changes in the expected path of future VIX (the “ex-
pectations hypothesis”) and, conversely, the extent to which they reflect changes in
variance risk premia. Across 10 specifications with forecast horizons of 1 month
and 1 quarter, I strongly reject the expectations hypothesis. This implies changes
in the premium investors pay for variance assets with different maturities drive
much of the variation in the shape of the VIX term structure, meaning this shape
should predict excess returns of variance assets.

I find that a single factor, the second principal component (PC) SLOPE,
summarizes nearly all information about variance risk premia in the VIX term
structure. SLOPE negatively predicts future returns of 18 variance assets: 6 ma-
turities each for synthetic S&P 500 variance swaps, VIX futures, and S&P 500
straddles. More surprising, the rest of the VIX term structure adds almost no pre-
dictive power for returns incremental to SLOPE, meaning that although many
factors are required to describe movements in the VIX and its term structure, only
SLOPE is related to movements in variance risk premia.

My methodology and results are similar to those in Cochrane and Piazzesi
(2005), who show that although many factors are required to describe movements
in bond yields and their term structure, only one of these factors is related to
movements in bond risk premia. In addition to studying a different set of as-
sets, the primary difference between this article and Cochrane and Piazzesi is
that T do not use a first-stage regression to find the single linear combination
of the term structure that best predicts average asset returns. Instead, I use the
second PC as the single factor because it predicts variance asset returns better
than do the other PCs. My informal selection approach is more conservative than
Cochrane and Piazzesi because it is not designed to find the best possible single
linear factor.

In addition to summarizing nearly all information about variance risk pre-
mia in the VIX term structure, SLOPE is an economically significant and robust
predictor of variance asset returns. As an illustration of its economic significance,
the difference in next-day (next-month) returns across extreme SLOPE quintiles
for the 18 variance assets ranges from 29 basis points (bps) to 181 bps (7.4% to
36.4%). This predictive relation is robust to alternate forecast horizons, remov-
ing extreme SLOPE events from the sample, and alternate definitions of SLOPE.
Furthermore, SLOPE predicts returns incrementally to other indicators that the
prior literature suggests are related to variance risk premia, including estimates of
implied minus expected variance.

To measure variance risk premia, I use future returns of variance-sensitive
investments studied in the literature: variance swaps as in Dew-Becker, Giglio,
Le, and Rodriguez (2017), VIX futures as in Eraker and Wu (2014), and S&P
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500 straddles as in Coval and Shumway (2001). Although I observe returns for
VIX futures and S&P 500 straddles, I do not observe variance swap returns and
therefore use returns of option portfolios designed to replicate variance swaps
(“synthetic variance swaps”). Variance asset returns are better suited to this study
than differences between option-implied and expected or realized variance (used
in Todorov (2010), Carr and Wu (2009), and elsewhere) for the reasons detailed
in Section III, the most important of which is they allow me to examine the next-
day and next-month risk premia associated with changes in variance at differ-
ent maturities. Differences between option-implied and expected or realized vari-
ance, by contrast, can be estimated for different maturities but doing so results
in estimates of risk premia over the entire time to maturity. Therefore, any dif-
ferences in estimated risk premia could be due to differences across maturities
in next-day or next-month risk premia, or differences across future horizons in
risk premia. By using variance asset returns, I rule out the latter and focus on
the former.

My results provide three puzzling empirical patterns for future work on vari-
ance risk premia to explain. The first is the insignificant relation between the
first PC (LEVEL) of the VIX term structure and variance asset returns. Most op-
tion pricing models (e.g., Heston (1993)), models of variance risk premia (e.g.,
Bakshi and Madan (2006)), and asset pricing models (e.g., Merton (1973), Martin
(2013), and Campbell, Giglio, Polk, and Turley (2017)) predict risk premia are
high when the LEVEL (not SLOPE) of volatility is high. The second is the posi-
tive relation between SLOPE and conditional variance risk premia together with
the negative relation between maturity and unconditional variance risk premia.
Explaining these facts together requires investors to be more averse to increases
in short-term variance than long-term variance, although long-term variance asset
prices increase more in times with large variance risk premia.

A third puzzling empirical pattern is that when SLOPE is low, future variance
risk premia are not just smaller, they actually change sign and become positive for
17 of 18 variance assets. For example, 12-month S&P 500 straddles have average
returns of 30 bps per day above the risk-free rate when SLOPE is in its lowest
quintile. This indicates the correlation between variance fluctuations and marginal
utility changes sign over time, meaning investors who normally pay large premia
to protect against variance increases occasionally worry about variance decreases
and therefore price variance assets at a discount.

Taken together, the results in my article have important implications for
both researchers in financial economics and investors in variance assets. For re-
searchers, my results provide surprising patterns for new theories of variance risk
premia to explain and allow future empirical work to easily summarize all vari-
ance risk premia information in the VIX term structure using SLOPE alone. For
investors or traders using variance-sensitive assets such as VIX exchange-traded
notes (ETNs) or S&P 500 options, my results show SLOPE is an economically
significant and timely indicator of expected returns.

The remainder of this article is organized as follows: Section II describes
my article’s relation to prior research, Section III details the construction of the
VIX term structure and variance asset returns, Section IV presents my empirical
results, and Section V concludes.

GZ8000£1060122005/£10L°0L/B1010p//:sdNny

*swR1/2402/610 9bpLquied mmm//:sdiiy Je a|gejieAe ‘asn Jo sw) 40D abpliquie) ay3 03 193[gns ‘€0:10:00 38 £10Z 29d 62 UO ‘7'ST°H'96 :SSaJppe dI 9402/6.10abpliquied mmm//:sd1ay wouy papeojumoq


https://doi.org/10.1017/S0022109017000825
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

2464  Journal of Financial and Quantitative Analysis

Il. Relation to Prior Research

This article builds on prior research studying the unconditional and con-
ditional risk premium associated with innovations in marketwide variance. The
unconditional variance risk premium is negative (see, e.g., Coval and Shumway
(2001), Bakshi and Kapadia (2003), Broadie, Chernov, and Johannes (2009), and
Carr and Wu (2009)), meaning that assets whose value is increasing in mar-
ket volatility earn negative risk premia and option-implied volatility is higher
than average realized volatility. Furthermore, Ait-Sahalia, Karaman, and Mancini
(2015), Dew-Becker et al. (2017), and Eraker and Wu (2014) show uncon-
ditional variance risk premia are downward sloping, meaning risk premia are
largest for variance assets with shorter maturities. In fact, long-dated vari-
ance assets have an unconditional risk premium close to zero. As discussed
in Dew-Becker et al., this is difficult to reconcile with most neo-classical as-
set pricing models, which predict that unconditional variance risk premia are
upward sloping. My results add to this challenge by showing the conditional
variance risk premia are larger for all maturities when the price of short-
dated variance assets is abnormally low relative to the price of long-dated
variance assets.

I contribute most directly to the literature studying determinants of condi-
tional variance risk premia. Many models and empirical analysis (e.g., Heston
(1993), Bakshi and Kapadia (2003), and Bakshi and Madan (2006)) suggest vari-
ance risk premia are larger when volatility is high. Todorov (2010) and Ait-Sahalia
et al. (2015) show variance risk premia are larger following downward jumps
in equity prices. Relatedly, Corradi, Distaso, and Mele (2013) find variance risk
premia are larger in times with recent stock market declines and high volatility.
Barras and Malkhozov (2016) show that variance risk premia are related to
the risk-bearing capacity of broker-dealers, as proxied by their aggregate lever-
age ratio. Finally, Feunou, Fontaine, Taamouti, and Tédongap (2014) show
that 2 factors from the variance term structure predict future excess variance
at forecast horizons of 1 to 12 months. I add to this literature by show-
ing conditional variance risk premia information in the VIX term structure,
a natural indicator that includes the level of volatility, is summarized by
SLOPE. Furthermore, unlike many of the papers in this area, I assess condi-
tional variance risk premia using variance assets with many different maturi-
ties and show that SLOPE predicts their future returns incrementally to existing
indicators.

My single-factor results are particularly surprising given that multiple
volatility factors are necessary in many other settings. Pricing the cross section
of equity returns (Adrian and Rosenberg (2008)), explaining the dynamics of
the VIX term structure (Egloff, Leippold, and Wu (2010)), pricing the S&P 500
volatility surface (Christoffersen, Heston, and Jacobs (2009), Christoffersen, Ja-
cobs, Ornthanalai, and Wang (2008)), and pricing VIX options (Mencia and Sen-
tana (2013)) are all dramatically improved by adding a second volatility factor.
Although I also find that the dynamics of the VIX term structure are explained
well by two factors (LEVEL and SLOPE), only SLOPE is consistently related to
variance risk premia.
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Bollerslev, Tauchen, and Zhou (2009) and Drechsler and Yaron (2011) study
the relation between variance risk premia and equity risk premia. Both papers
show that a proxy for conditional variance risk premia, the difference between
VIX? and an estimate of statistical-measure variance, positively predicts equity
returns. In untabulated tests, I find that SLOPE does not predict equity returns de-
spite being positively correlated with implied minus statistical variance. Instead,
the equity return predictability afforded by the VIX term structure in Bakshi,
Panayotov, and Skoulakis (2011) and Feunou et al. (2014) is attributable to other
PCs of the VIX term structure, none of which predicts variance asset returns. This
indicates that either SLOPE predicts variance asset returns for nonrisk reasons
such as mispricing or demand-based price impacts (as in Garleanu, Pedersen, and
Poteshman (2009)) or SLOPE represents a type of variance risk premia outside
the Bollerslev et al. (2009) and Drechsler and Yaron (2011) models.

My evidence on the returns of a SLOPE-based dynamic straddle strat-
egy builds on the extant work studying dynamic variance asset portfolios in
Aut-Sahalia et al. (2015), Filipovié, Gourier, and Mancini (2016), and Egloff et al.
(2010). Unlike these papers, my goal is not to compute an optimal portfolio strat-
egy, but rather to document that the predictability afforded by the VIX term struc-
ture is summarized by a single factor.

[ll.  Constructing the VIX Term Structure and Variance Asset
Returns

A. VIX Term Structure

A key construct in my analysis is the VIX term structure, which I compute
by replicating the CBOE’s VIX calculation, but with target maturities longer than
1 month. The VIX calculation is an estimate of the model-free implied volatility
measure originating in Breeden and Litzenberger (1978). If options are available
for every strike price, the VIX equals:

5 zerT Fi 1
1) VI, = 5 o PUT(K: 1+ T)dK
0

© 1
+/ —ZCALL,(K;t—i—T)dK},
r K

where F; is the time 7 forward price of the S&P 500 at time t + 7', and PUT,(K; ¢ +
T)and CALL,(K;t+T) are the prices at time ¢ of puts and calls expiring at time
t+ T with strike price K. As shown in Neuberger (1994) and Carr and Madan
(1998), if the S&P 500 follows a diffusion process dS,/S, =rdt+o0,dZ, under
the risk-neutral measure, VIXZTJ equals the risk-neutral expectation of average
future instantaneous variance:

1 t+T
) VIX;, = 7]E;@ [ / afds].
t

The standard approach to estimating the VIX equation (1) empirically, used
by the CBOE to compute the VIX, discretizes the integral at the available strike
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prices and truncates it at the smallest and largest available strike prices, making
the expression:

3) vie, = 2. > L oprion (Ki;t+T)AK,
Tt - T o K[z t [ [
where OPTION, (K;; t+T) is the price of the out-of-the-money option for strike
K; at time ¢ with expiration date 4 7. The VIX calculation (see www.cboe
.com/micro/vix/vixwhite.pdf for details) further specifies how to determine which
option is out of the money and provides additional corrections, all of which I
follow.

Using closing quotes for S&P 500 index options and risk-free rates from
1996 through 2013 via OptionMetrics, I compute VIX;, for T =1, 2, 3, 6, 9, and
12 months at the close of each day ¢. These maturities represent the approximate
times to expiration typically available for index options. Together, they form the
VIX term structure at .

Table 1 presents descriptive statistics for the VIX term structure. In both
medians and means, long-term VIX are higher than short-term VIX, indicating
that the average term structure is upward sloping. There is substantial variability
in the VIX at all horizons, though short-term VIX are more volatile than long-term
VIX. One potential reason is that because return volatility is mean reverting, times
with high (low) VIX have not so high (low) long-term VIX. Another potential
reason is that risk premia change more over time for short-dated variance risk
than for long-dated variance. In the analysis that follows, I provide evidence that

TABLE 1
Summary Statistics for the VIX Term Structure and Its PCs

Table 1 presents summary statistics for the VIX term structure and its principal components (PCs). The VIX term structure
is an annualized model-free estimate of option-implied volatility for the Standard & Poor’s (S&P) 500 index 1, 2, 3, 6, 9,
and 12 months into the future. Panel A presents the summary statistics for the term structure. Panel B presents both
the definitions and variances of the PCs of the implied variance (VIX?) term structure. The sample contains 4,445 daily
observations from 1996 through 2013.

Panel A. VIX Term Structure

Statistic VIX; VIXz VIX3 VIXe VIXg VIXi2
Mean 21.7% 22.0% 22.2% 22.6% 22.6% 22.7%
Standard dev. 8.5% 7.9% 7.5% 6.7% 6.3% 6.1%
1st percentile 10.6% 11.3% 11.8% 12.9% 183.1% 13.3%
10th percentile 13.0% 13.5% 14.0% 14.8% 16.1% 15.4%
25th percentile 16.0% 16.6% 17.0% 17.9% 18.1% 18.3%
Median 20.2% 20.7% 21.2% 21.9% 22.1% 22.1%
75th percentile 24.9% 25.3% 25.5% 26.1% 25.7% 26.2%
90th percentile 31.5% 30.8% 30.5% 30.5% 30.2% 30.4%
99th percentile 54.5% 52.0% 50.7% 45.7% 43.5% 41.5%

Panel B. Principal Component Definitions and Variance

LEVEL SLOPE CURVE
PCA1 PC2 PC3 PC4 _PC5_ _PC6_
VIX? 0.52 —0.57 —0.55 0.16 0.04 —0.28
VIXS 0.48 —0.24 0.24 -0.25 0.04 0.77
VIXE 0.44 —0.01 0.62 -0.33 —-0.01 —0.57
VIXZ 0.36 0.30 0.15 0.65 —0.58 0.07
VIXS 0.32 0.44 —0.02 0.32 0.78 0.02
VIXE, 0.29 0.58 —0.48 —0.53 -0.25 —0.01
Variance (x10°) 100.73 4.75 0.32 0.16 0.13 0.07

% of total 94.89 4.47 0.30 0.15 0.12 0.07
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both potential reasons contribute to the relative movements of long- and short-
dated volatility.

Given the strong correlations between VIX at different horizons, a natural
way to study variations in the shape of the term structure is to rotate it into 6
orthogonal PCs. I apply this linear rotation to option-implied variances (VIX?)
rather than to volatilities because return variances combine linearly across matu-
rity (assuming no autocorrelation in returns) whereas volatilities do not. Panel B
of Table 1 shows definitions of and summary statistics for the resulting PCs, scaled
so that their variances equal the 6 eigenvalues of the VIX term structure’s covari-
ance matrix. The first PC loads positively on all 6 VIX?, and therefore reflects the
LEVEL of the term structure. The second PC loads negatively on short-horizon
VIX? but positively on long-horizon VIX® and therefore reflects the slope of the
term structure. When SLOPE is low (high), the term structure is downward (up-
ward) sloping. Note that the positive coefficients in the definition of SLOPE have
larger magnitudes than do the negative coefficients.! As a result, it is possible for
SLOPE to be positive on a day when the VIX term structure is strictly decreas-
ing. For this reason, my analyses compare high-SLOPE periods to low-SLOPE
periods, making the average SLOPE irrelevant.

Figure 1 plots the standardized LEVEL and SLOPE PCs of the VIX term
structure. LEVEL follows the familiar pattern of the VIX, remaining low and
stable during normal times and spiking upward during market downturns. In nor-
mal times, SLOPE is high, indicating an upward-sloping term structure. Further-
more, in low-volatility times there is a clear positive correlation between SLOPE
and LEVEL. When LEVEL spikes upward, however, SLOPE spikes downward,
indicating a downward-sloping term structure and negative correlation between
SLOPE and LEVEL. This time-varying correlation averages out to 0, by con-
struction, in the full sample. In Section IV.D, I further discuss these changes in
correlation and address the non-normality of SLOPE apparent in Figure 1.

B. Variance-Sensitive Asset Returns

The most common definition of the conditional variance risk premia is
the difference between conditional variance under the risk-neutral and physical
measures. However, this quantity is inherently unobservable because asset prices
reflect risk-neutral rather than physical variance. Therefore, to investigate the in-
formation in the VIX term structure about variance risk premia at different matu-
rities, I need to estimate variance risk premia for each day ¢ and each maturity 7.
Other papers estimate this quantity using:

i) VIX2, —&,(RV2,, ,,), the difference between option-implied and expected
future realized variance, where the physical-measure expectation is based
on a statistical model (Todorov (2010), Bekaert and Hoerova (2014), and
others), and

'SLOPE needs to have positive average loadings to be uncorrelated with LEVEL because the VIX
term structure tends to be downward sloping (in a geometric sense) when volatility is high due to mean
reversion, meaning a zero-sum definition of SLOPE would be negatively correlated with LEVEL.
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ii) RV}, ., —VIX},, the difference between future realized variance and

option-implied variance (Carr and Wu (2009), Feunou et al. (2014), and
others).

The problem with these measures in this setting is that they do not allow
me to examine the premia associated with variance risk at many maturities while
holding the forecast horizon fixed. Both can be estimated for different maturi-
ties 7, but doing so results in estimates of risk premia over the entire time to
maturity. As a consequence, any differences in estimated risk premia could be
due to differences across maturities in risk premia or differences across future
horizons in risk premia. For this reason, I use returns of variance-sensitive assets
with different maturities to proxy for variance risk premia. These assets offer dif-
ferent exposures to the (potentially) many variance risk factors reflected in the
VIX term structure while allowing me to hold the forecast horizon and holding
period fixed.

Variance asset returns offer two other advantages over measures based on
comparisons of option-implied and realized or model-expected variance. The first
is they directly relate to asset pricing models that study the risk premia associ-
ated with investable assets. The second is variance asset returns do not depend on
which statistical model is used to estimate E,(RV},, ;) or RV, ..

The first variance asset I use is an S&P 500 variance swap, a contract that
swaps a fixed payment for a variable amount proportional to the realized variance
of the S&P 500 index (as used in Dew-Becker et al. (2017)). Without over-the-
counter swap pricing data, I proxy for variance asset returns using the returns
of “synthetic variance swaps,” option portfolios designed to replicate variance
swaps. The key insight behind these replicating portfolios is that VIXiT is the
price of a particular portfolio of traded options that replicates a variance swap

FIGURE 1
Level and Slope of the VIX® Term Structure

Figure 1 presents the first two principal components (PCs) of the VIX? term structure. The VIX? term structure is an
annualized model-free estimate of option-implied variance for the Standard & Poor’s (S&P) 500 index 1, 2, 3, 6, 9, and
12 months into the future. | plot its first two PCs, which | call LEVEL and SLOPE, standardized so that both have mean of
0 and standard deviation of 1. The PCs are defined in Table 1. The sample contains 4,445 daily observations from 1996
through 2013.

10 | — LEVEL

SLOPE

Standardized PC Value

1998 2000 2002 2004 2006 2008 2010 2012
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(Carr and Madan (1998)). As detailed in the Appendix, the daily synthetic vari-
ance swap returns I use are the day return of this replicating portfolio of op-
tions. To keep the maturity constant and the replicating portfolio as accurate as
possible, the monthly synthetic variance swap returns I use are the daily returns
compounded from 7+ 1 through ¢ +21. To match the VIX term structure, I con-
struct returns for synthetic variance swaps with 7'=1, 2, 3, 6, 9, and 12 months to
maturity.

Note that although the portfolio of options that replicates a variance swap
has a value on day ¢ that is proportional to VIXZT’[, its value on day ¢+ 1 is not
proportional to VIX; ., or VIX;_, .. The reason is the portfolio of options used
to replicate a variance swap at ¢ has different weights and uses different options
than the portfolio used at # 4 1. This difference is critical because the VIX index is
not directly investable and has no drift driven by variance risk premium, whereas
the returns of synthetic variance swaps I study are investable (up to transaction
costs) and subject to risk-based drift.

On most days, there are no options expiring exactly 7" months later, and so
the VIX calculation uses a linear combination of options with the two nearest
expiration dates to # + 7. As detailed in the Appendix, I use this same linear com-
bination to form a portfolio at time ¢ and compute its time 7 4 1 returns, resulting
in a “constant maturity” strategy. Because of the mismatch between T and avail-
able expiration dates, and because of the discreteness in strike prices, the portfolio
returns I use are imperfect proxies for true variance swap returns. However, unlike
changes in the VIX itself, these returns are tradable (the portfolio weights sum to
1) and not interpolated.

Although variance swaps are the most direct measure of variance risk, with-
out data on over-the-counter pricing their empirical implementation requires com-
puting the return of the option portfolio described above and is therefore sub-
ject to more illiquidity-driven noise than directly observed variance assets. For
this reason, the second variance asset I study is VIX futures, promises to ex-
change a fixed payment for the prevailing VIX index value at a prespecified
date (as used in Eraker and Wu (2014)). These contracts have traded since
2004, and historical end-of-day data are available on CBOE.com, meaning no
replication is necessary. Following the approach detailed in the Appendix, I
compute daily returns of constant maturity VIX futures strategies that use a
mixture of the two maturity dates nearest to a target maturity date 7 =1, 2,
3, 4, 5, or 6 months from the current date + and compound them to com-
pute monthly returns. I use these 6 target maturities because there are re-
liable data on contracts with approximately these times to maturity starting
in 2004.

Like the synthetic variance swap returns, the VIX futures returns I
construct are for portfolios formed using information available on day ¢,
held for a day, and then rebalanced using information available on day
t+1. Constant maturity strategies are common in the VIX futures mar-
ket; for example, the popular VXX ETN uses a constant maturity strat-
egy with target maturity of 1 month, and so my daily 1-month VIX fu-
tures returns are nearly identical (correlation 96%, result untabulated) to those
of VXX.
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Although VIX futures returns are more liquid than the out-of-the-money op-
tions used to compute synthetic variance swap returns, they only started trading
in 2004, limiting the power of return predictability tests. As a middle ground, I
compute at-the-money S&P 500 straddle returns (as used in Coval and Shumway
(2001)). At-the-money options are the most liquid, and straddle portfolios have
many fewer positions and therefore smaller transactions costs than option port-
folios replicating variance swaps. Moreover, straddle returns are available since
the beginning of the OptionMetrics data set in 1996. Following the approach de-
tailed in the Appendix, I compute the daily returns of constant maturity straddle
strategies that use a mixture of the 2 maturity dates nearest a target maturity date
that is always T =1, 2, 3, 6, 9, or 12 months from the current date and compound
them to compute monthly returns.

Table 2 provides summary statistics for the returns of these 18 variance-
sensitive assets. Because of the variance risk to which they are exposed, these
assets have substantially negative abnormal returns, as low as —1% per day or
—18% per month. They are also subject to extreme volatility, as high as 15% per
day. Nevertheless, they offer significantly negative Sharpe ratios, most ranging
from —0.25 to —0.75 on an annualized basis.

Table 2 also shows there are significant differences in average risk premia
earned by these assets. Specifically, synthetic variance swaps tend to have more
negative Sharpe ratios than VIX futures and S&P 500 straddles, and longer matu-
rity variance assets tend to have less negative Sharpe ratios than shorter maturity
assets, echoing the results in Dew-Becker et al. (2017) and Eraker and Wu (2014).

To help explain the negative risk premia earned by these assets, I appeal to
the pricing model used in Ang, Hodrick, Xing, and Zhang (2006) and regress
excess asset returns on contemporaneous excess market returns and innovations
in the 1-month VIX index:

4) rip—Fpy = Q; + IBLMKT(rMKT,I - rf,t) + ﬁi,AVIX(VIXI,I - VIXI,I—I) + €y

For each asset, Table 2 reports estimates of «;, B; mxr, and B; avix, Which repre-
sent the asset’s sensitivity to changes in the market and VIX after controlling for
changes in the VIX and market, respectively.? As a result, although the variance
assets have large negative capital asset pricing model (CAPM) betas due to the
negative correlation between variance changes and market returns, in the Ang
et al. (2006) framework they have relatively small market betas. Reassuringly, all
18 test assets have positive B; avix, Which indicates they are exposed to variance
risk. Moreover, those with larger B8; ovix tend to have more negative Sharpe ratios,
indicating variance risk is an important factor in explaining the unconditional risk
premia of these assets. Finally, all 18 test assets have negative daily and monthly
«; in the Ang et al. model.

The biggest takeaway from Table 2 is that although these 18 test assets are
all positively exposed to variance risk, they have different exposure to variance

*The intercept « is not an excess return because the change in VIX is not a traded asset. However,
assuming VIX is stationary, an estimate of « in equation (4) is an unbiased estimate of the CAPM
alpha.
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risk at different maturities. Several results in Table 2 support this takeaway. The
first is that the relations between B; svix and both risk premia and Sharpe ratios are
nonlinear, suggesting a linear single factor model is insufficient. The second is, as
described previously, that longer maturities have smaller absolute Sharpe ratios,
indicating long-term and short-term variance risk are priced differently. The third
is, even holding maturity fixed, that the three different types of assets have differ-
ent Sharpe ratios, indicating their risk exposures are not identical. The fourth is,
as presented in Panel D, that although the test assets are all positively correlated

TABLE 2
Summary Statistics for Returns of Variance Assets

Table 2 presents summary statistics for daily returns of 18 variance assets in excess of the risk-free rate. The first group,
presented in Panel A, are option portfolios that replicate variance swaps at 6 maturities. The second group, presented
in Panel B, are 6 constant-maturity VIX futures strategies. The third group, presented in Panel C, are 6 constant-maturity
at-the-money Standard & Poor’s (S&P) 500 straddle strategies. For each asset, | compute «, B uxr, and i avix, the coef-
ficients in a time-series regression of excess asset returns on contemporaneous excess market returns and changes in
the VIX:

hi—re = o+ Bt (fakre — fre) + Biavix (VIX1e = VIX1 21) + €14
Panel D presents the correlation matrix for daily excess returns of the 18 variance assets. The sample contains 4,445

daily observations from 1996 through 2013 for variance swaps and straddles, and 2,375 daily observations from 2004
through 2013 for VIX futures.

Maturity (months)

Statistics 1 2 3 6 9 12

Panel A. Excess Synthetic S&P 500 Variance Swap Returns

Daily Returns

Mean —1.36% —0.64% —0.35% —0.20% -0.12% —0.08%
Standard dev. 15.08% 9.85% 7.80% 5.28% 4.36% 4.19%
Sharpe ratio (ann.) —1.44 —1.03 -0.71 —0.61 —0.45 -0.29
Skewness 4.18 3.64 2.66 2.23 1.42 1.39
o —1.40% —0.63% —0.33% —0.19% -0.11% —0.06%
Bimkr 0.99 —0.46 —0.86 —0.54 -0.57 —0.58
Bi.avix 7.26 4.40 3.10 2.19 1.61 1.22
Monthly Returns

Mean —18.31% —9.52% —5.56% —3.76% —2.40% —1.37%
Standard dev. 126.52% 73.56% 49.55% 27.98% 21.82% 21.25%
Sharpe ratio (ann.) —-0.50 —0.45 -0.39 —0.47 -0.38 -0.22
Skewness 10.17 7.89 4.99 2.63 1.86 1.83
o —18.96% —9.49% —5.22% —3.63% -2.11% —1.14%
Bimkr 0.99 —0.15 —0.66 -0.28 -0.54 -0.43
Bi.avix 16.65 10.31 6.82 3.80 2.55 2.31

Panel B. Excess VIX Futures Returns

Daily Returns

Mean —0.19% —0.20% —0.14% —0.08% —0.07% —0.08%
Standard dev. 3.79% 3.63% 3.32% 3.22% 3.27% 3.73%
Sharpe ratio (ann.) -0.81 -0.89 -0.67 —0.41 -0.34 -0.34
Skewness 0.97 0.81 0.57 0.49 0.62 0.44
o —0.16% —0.18% —0.11% —0.06% —0.04% —0.06%
Bimkr —1.00 —1.00 —0.93 -0.82 -0.93 —0.73
Bi.avix 1.00 0.87 0.74 0.71 0.56 0.57
Monthly Returns

Mean —3.78% —4.02% —2.92% —1.76% —1.59% —2.28%
Standard dev. 20.51% 19.04% 16.08% 15.39% 14.69% 13.55%
Sharpe ratio (ann.) —0.64 —0.73 —0.63 —0.40 -0.37 —0.58
Skewness 2.90 2.23 1.73 1.79 1.67 0.71
a; —2.90% —3.11% —2.09% —0.94% —0.83% —1.64%
Bkt —1.52 —1.58 —1.44 —1.43 -1.32 —1.12
Bi.avix 1.78 1.41 0.96 0.78 0.86 0.49

(continued on next page)
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TABLE 2 (continued)
Summary Statistics for Returns of Variance Assets

Maturity (months)

Statistics 1 2 3 6 9 12

Panel C. Excess S&P 500 Straddle Returns

Daily Returns

Mean -0.32% -0.18% -0.10% —0.03% -0.02% 0.00%
Standard dev. 5.86% 3.41% 2.63% 1.75% 1.44% 1.31%
Sharpe ratio (ann.) —0.88 —-0.84 -0.62 -0.30 -0.17 0.00
Skewness 3.65 3.35 2.95 1.14 1.43 1.08
o —0.39% —0.22% —0.14% —0.06% —0.04% —0.02%
Bimkr 2.33 1.45 1.13 0.85 0.74 0.67
Bi.avix 3.14 1.94 1.48 0.96 0.76 0.64
Monthly Returns

Mean —5.29% —3.10% —1.70% —0.42% -0.13% 0.13%
Standard dev. 35.74% 21.03% 16.35% 11.45% 9.27% 8.13%
Sharpe ratio (ann.) —0.51 —0.51 -0.36 -0.13 —0.05 0.05
Skewness 3.40 2.64 2.24 1.54 1.26 0.99
o —6.52% —4.06% —2.52% —1.08% -0.72% —0.40%
Bimkr 2.1 1.65 1.42 1.15 1.03 0.92
Bi.avix 5.51 3.56 2.83 1.94 1.56 1.27

Panel D. Correlations Among Daily Returns of Variance Assets

>
’g Variance Swaps VIX Futures S&P 500 Straddles
5]
=2 12 8 6 2 1 8 6 1 3 6 12
Variance Swaps 1 100 08 08 062 076 069 043 085 077 063 046
3 100 092 076 087 080 052 066 073 064 048
6 100 079 086 081 055 0.64 0.71 0.66 0.54
12 100 079 075 051 0.42 053 054 051
VIX Futures 1 100 092 059 053 063 058 050
3 1.00 056 046 058 055 0.48
6 1.00 026 035 035 0.31
S&P 500 Straddles 1 100 083 070 054
3 1.00 086 0.71
6 1.00 0.79
12 1.00

with each other, their correlations are mostly between 50% and 80%, indicating
they are exposed to different risk factors. Together, these results make it unlikely
that the conditional risk premia of all 18 tests assets are related in the same direc-
tion to a single factor in the VIX term structure. However, in Section IV, I show
that this is indeed the case.

IV. Empirical Results

A. Expectations Hypothesis

A natural hypothesis is that the shape of the VIX term structure reflects ex-
pectations about future changes in return variance and not differences in variance
risk premia. For example, this “expectations hypothesis” states an upward-sloping
VIX term structure reflects market’s expectation that the VIX will increase over
the next year rather than higher variance risk premia in longer term options. The
expectations hypothesis for the VIX term structure is directly comparable to the
expectations hypothesis for bond markets, which states the shape of the Treasury
yield curve reflects expectations about future changes in Treasury yields and not
differences in bond risk premia.
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The motivation for the expectations hypothesis can be seen from manipulat-
ing equation (2), which assumes only that the underlying index has no jumps:

l t+k+m
) Vi = el [ / ofds]

1 t+k t+k+m
= — (]E;Q [/ olds —i—/ deS])
k+m ' 1+k

E2 (VIX

m,t+k) >

k 2
= k-l——mVIXk’t +

m
k+m
where m is a VIX maturity and k is a forecast horizon. In this case, equation (5)
says that the current long-term (k +m) VIX? is a weighted average of the current
short-term (k) VIX* and risk-neutral expected short-term () VIX® k periods into
the future. I rearrange equation (5) to find the market’s risk-neutral expected future
VIX*:

(6) EC (VIX?

m,t+k

) = VIX

k+m,t

L (VIX;
m

ktme VIX?,[) '

The expectations hypothesis takes equation (6) a step further by assuming
the risk premium EF (VIX? ) —E2 (VIX? ) is constant and equal to a. This
implies the current shape of the term structure reflects statistical-measure expec-
tations about future changes in the VIX. Specifically, substituting into equation
(6), the expectations hypothesis implies:

7 E} (VIX:

m,H—k)

— a+EX(VIX,,)

k
= a+VIX;,, + —~ (VIX;,,, — VIX; ).

I test equation (7) using regressions of the form:

(8) VIX: . —VIXi,,, = a+b(EX(VIX )= VIXE,,,) + €niis
) VIX: ,,, — VIX}, = a+b(EF(VIXZ ) — VIXZ,) + €irs

(10)  EP*HP(VIX?

) = VI, 4 (VIXE,, — VIXE),

where the expectations hypothesis predicts b=1. The first specification (8) tests
the expectation hypothesis prediction that VIX “decays” VIXZ ., —VIX;, .
whereas the second specification (8) tests the prediction that VIX “changes”
VIX? ., — VIXZ .

To estimate specifications (8) and (9), I require that m, k, and k+m are
maturities contained in the VIX term structure (1, 2, 3, 6, 9, and 12 months).
I therefore test the expectations hypothesis using maturities m =1 and m =2 for
forecast horizon k=1, and maturities m =3, m =6, and m =9 for forecast horizon
k=3. This yields 10 tests of the expectations hypothesis, 5 for predicting VIX
decays and 5 for predicting VIX changes.

Table 3 presents the results of these 10 tests of the expectations hypothe-

sis. In every case b<1, and I strongly reject the expectations hypothesis null
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TABLE 3
Expectations Hypothesis for the VIX Term Structure

Table 3 presents tests of the expectations hypothesis for the VIX term structure, which states:
k
EPHP (VD k) = a4 VIXE o+ = (VX = VIXE, ),

where VIXr,t? is an annualized modelfree estimate of the option-implied variance for the Standard & Poor's (S&P) 500
index T months into the future measured on day t. Specifically, in Panel A, | test the implications of the expectations
hypothesis for predicting the decay in VIX using regressions of the form:

VI e = VI e = @t bx (BT (VIXE, ) = VIXE ) + € X VIXE,  + €

for a variety of k and m. In Panel B, | test the implications of the expectations hypothesis for predicting changes in VIX
using regressions of the form:

VIXZ

mit+k T 'm,t

VD, = atbx (BT (VIXE, ) = VIXE, ) 0 X VIXE i

Standard errors are in parentheses, computed using Newey and West (1987) with lags equal to 1.5 times the number of
overlapping days. | also present p-values for the expectations hypothesis null b=1.

k=1: k=3:
Predicting Next-Month Decay Predicting Next-Quarter Decay
m=1 m=2 m=3 m=6 m=9

Panel A. Predicting VIX Decay (VIX:, .. — VX, .\ ,)

b -0.299 -1.263 -0.562 —1.430 0.088 —1.251 0.319 -0.745 -0.017 -0.947
(0.442) (0.416) (0.577) (0.468) (0.341) (0.327) (0.342) (0.263) (0.380) (0.295)

¢ — —0.285 — —0.250 — —0.508 — —0.394 — —0.382
— (0.080) — (0.061) — (0.066) — (0.058) — (0.049)

Exp. hyp. p-value  0.3% 0.0% 0.7% 0.0% 0.8% 0.0% 4.6% 0.0% 0.7% 0.0%
R? 0.6%  10.5% 23% 125% 0.0%  16.0% 0.7%  14.2% 0.0%  16.0%

Panel B. Predicting VIX Change (VIXC, ., — VIXE, ,)

b 0.350 -0.132 0232 -0250 0544 -0.125 0650 0064 0418  0.001
(0.221) (0.208) (0.341) (0.265) (0.171) (0.164) (0.170) (0.135) (0.198) (0.188)

& —  —0285 —  —0252 —  —0508 —  —0387 —  —0354
—  (0080) —  (0057) —  (0.086) —  (0.053) —  (0.047)

Exp. hyp. p-value  0.3% 0.0% 2.4% 0.0% 0.8% 0.0% 4.0% 0.0% 0.3% 0.0%
R? 34%  13.0% 1.3% 11.1% 89%  23.4% 8.5%  20.3% 37% 17.9%

(b=1), echoing the conclusion Mixon (2007) reaches using the term structure
of Black—Scholes (1973) implied volatilities. Given the size of the variance risk
premium, the failure of the expectations hypothesis in other settings, and the ev-
idence in other papers of variance asset return predictability, the failure of the
expectations hypothesis for the VIX term structure is not surprising. But what
is surprising is that there appears to be little or no relation between future VIX
movements and movements predicted by the expectations hypothesis. All 5 of
the decay-predicting tests in Panel A have negative and insignificant b. The VIX
change regressions in Panel B have positive b, though only the next-quarter pre-
dictions are statistically different from 0.

Furthermore, the positive values of b in Panel B of Table 3 are due entirely
to mean reversion in VIXC,. If the expectations hypothesis is correct, the optimal
forecast of mean reversion should be captured perfectly using the shape of the
VIX term structure, leaving no room to incrementally predict VIX changes using
the current VIX. However, as I show in Table 3, when I add the current VIXfM to
the right-hand side of equations (8) and (9), not only does the current VIX load
negatively, reflecting mean reversion, but it drowns out any predictability afforded
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by the expectations hypothesis term. This implies the shape of the term structure
predicts next-quarter VIX changes because it is a noisy proxy for expected mean
reversion, which is more precisely measured by VIXiI alone. After controlling
for risk aversion, all 10 of the b in Table 3 are either negative or positive but
insignificant.

Put more broadly, Table 3 shows that, contrary most models and intuition, the
VIX term structure does not reliably increase (decrease) after the VIX term struc-
ture is upward (downward) sloping. To the extent it does, the VIX term structure
contains no information other than the simple mean reversion already captured by
the current VIX.

B. Single-Factor Tests

Given the failure of the expectations hypothesis, it must be that time varia-
tion in the shape of the VIX term structure is driven by changes in variance risk
premia embedded in options used to compute VIX. In this section, I show that
the variations in variance risk premia across different maturities are driven almost
entirely by different exposures to variations in a single factor: the second PC of
the term structure (SLOPE).

My approach and conclusions mimic those in Cochrane and Piazzesi (2005),
who find that a single factor summarizes nearly all information about bond risk
premia in the Treasury term structure, though with two key differences. The first is
that the Cochrane—Piazzesi factor is tent-shaped, whereas SLOPE is monotonic.
The second, and more important, difference is that Cochrane and Piazzesi esti-
mate their single factor using a first-stage regression of average returns across all
test assets on the full term structure, effectively choosing the best possible single
factor. By contrast, I use the second PC as the single factor because it predicts
variance asset returns better than do the other PCs. My informal factor selection
approach is more conservative because it limits the scope of potential linear com-
binations to the factors resulting from principal components analysis and is not
designed to compute the optimal single factor.

As discussed in Section III, I use returns for 18 variance assets as proxies for
variance risk premia. Given the evidence in Table 2, it seems likely that each of
these 18 assets has different loadings on multiple factors in the VIX term structure,
resulting in conditional expected returns of the form:

an E(ris) —rrn = a+VIX] Xy,

where VIX? is a vector of the 6 VIXZ,, and y; is a vector of the 6 loadings for asset

i on the 6 VIX. By rotating VIX® using the PC definitions ' given in Table 1,
equation (11) can be rewritten as:

(12) E (ri41) — Vsl = a+PC x\,

where PC, = VIX’ x I is a vector of the 6 PCs of VIX: and X, =T "'y, is a vector
of the 6 loadings for asset i on the 6 VIX.

A much more restrictive asset pricing model is that all information about the
risk premia of these 18 test assets in the VIX term structure can be summarized by
the second PC, SLOPE,. This hypothesis implies expected returns take the form:

(13) ]Et(ri,t+1) - rf,t+l = ai + b,SLOPEt

GZ8000£1060122005/£10L°0L/B1010p//:sdNny

*swR1/2402/610 9bpLquied mmm//:sdiiy Je a|gejieAe ‘asn Jo sw) 40D abpliquie) ay3 03 193[gns ‘€0:10:00 38 £10Z 29d 62 UO ‘7'ST°H'96 :SSaJppe dI 9402/6.10abpliquied mmm//:sd1ay wouy papeojumoq


https://doi.org/10.1017/S0022109017000825
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

2476 Journal of Financial and Quantitative Analysis

Note that in equation (13), all time-series variation in variance risk premia come
from variations in SLOPE,, whereas all cross-sectional differences in variance
risk premia come from the constant factor loading b; and intercept a;.

I test whether the restricted model (13) holds empirically using the fact that
model (13) is equivalent to model (12) when the factor loadings A; ; are 0 except
for SLOPE j =2. I therefore estimate the unrestricted model using regressions of
the form:

14) Vigr1 — Vrpqn = a; +PC, x \; + €irtls

and test the single-factor hypothesis using a x? test for the hypothesis that A; are
jointly 0 for all factors except SLOPE.?

The results in Table 4 largely support the single-factor hypothesis for both
next-day and next-month variance asset returns. With 3 test assets, each with 6
maturities, and 2 forecast horizons, Table 4 presents 36 variations of my test of
the single-factor hypothesis. In all 36 cases, SLOPE negatively predicts variance
asset returns, 33 of which are statistically significant. No other PC predicts vari-
ance asset returns with nearly such consistency. As discussed further below, the
failure of the LEVEL factor is particularly surprising because most models predict
variance risk premia should be large during high-variance times.

I reject the single-factor hypothesis using the x? test in only 8 of the 36 cases.
Even in these cases, however, SLOPE delivers most of the predictability. These re-
jections are mostly due to the fifth PC, PC5, which significantly predicts returns in
9 cases. However, I discount the importance of this predictability for four reasons.
The first is the inherent difficulty in interpreting PC5, which explains only 0.12%
of the total variance in the VIX term structure. The second is that the relation be-
tween PC and future returns is positive in some cases and negative in others. The
third is that Table 4 presents the adjusted R* for SLOPE-only regressions as well
as the full 6-factor regressions, and even in cases where the single-factor hypoth-
esis is rejected, for example, for next-month S&P straddle returns in Panel F of
Table 4, the R? afforded by SLOPE alone is almost as large as the unrestricted R

The final reason I discount the predictability offered by other PCs that reject
of the single-factor hypothesis is that regressions with SLOPE alone outperform
unrestricted regressions in out-of-sample (OOS) tests. For both restricted and un-
restricted models, I compute OOS R? by estimating an OOS predicted return for
each t:

(15) Pt —Fran1 = a4 +PC, x Ny,

where the coefficients g;, and )A»,,, are estimated using only past and future ob-
servations where the left-hand side does not overlap with observation ¢.* Because
they use past and future data, these OOS regressions assess how much of the
predictive relation is due to small-sample overfitting but do not represent the eco-
nomic value of the predictor to a real-time investor, an issue I revisit in later in

3To make the economic magnitudes of \; easier to interpret, I scale the PCs to have a standard
deviation of 1.

*For next-day returns in Panels A-C of Table 4, I use all observations but 7. For next-month returns
in Panels D-F, I use all observations but # — 20 through 7 +20.
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Figure 2. In 33 of 36 regressions, the OOS R? for SLOPE alone is higher than the
unrestricted OOS R?. Even in the three exceptions, the OOS performance is very
close.

Taken together, the evidence in Table 4 indicates SLOPE summarizes all
economically meaningful information about variance risk premia in the VIX term
structure.

TABLE 4
Single-Factor Tests for Conditional Variance Risk Premia

Table 4 presents tests of the single-factor hypothesis that all variance risk premium information in the VIX term structure
is contained in the second principal component (PC), SLOPE. For 18 variance assets, | regress future excess returns
on the 6 PCs of the VIX term structure, each scaled to have a standard deviation of 1. For each regression, | present
two R? measures for the 6 PCs combined and for SLOPE alone: adjusted R? and an out-of-sample (OOS) R? based
on fitted values f:,,1 estimated using all observations except those overlapping with r; 1. | test the single-factor null
that the coefficients on all PCs except SLOPE are 0, using a x? hypothesis test for their joint significance. Panel A tests
the single-factor hypothesis for daily synthetic Standard & Poor’s (S&P) 500 variance swap returns, Panel B for daily
VIX futures returns, and Panel C for daily at-the-money S&P 500 straddle returns, all net of the risk-free rate. Panels D-
F repeat the exercise using overlapping observations of next-month returns. Daily returns are in basis points, monthly
returns are in percentages, and standard errors for the coefficients and p-values for the single-factor hypothesis tests
are in parentheses. For monthly returns, standard errors are computed using Newey and West (1987) with 32 lags. * and
** indicate significance at the 5% and 1% levels, respectively.

Maturity (months)

1 2 3 6 9 12

Panel A. Predicting Next-Day S&P 500 Variance Swap Returns

LEVEL: —15.31 —11.02 —2.76 —-1.98 —0.30 —1.14
(24.87) (20.11) (16.12) (12.18) (10.02) (7.98)
SLOPE; —55.37* —59.60** —56.49** —31.85"* —24.76™* —19.35*
(26.59) (20.27) (16.17) (11.87) (9.32) (7.61)
CURVE; —23.82 —22.76 —21.41 —3.62 1.12 3.89
(25.05) (19.81) (16.37) (11.34) (8.97) (7.79)
PC4; 11.78 11.41 14.85 11.40 11.59 5.02
(29.33) (21.56) (16.82) (11.45) 9.11) (7.46)
PC5¢ 13.13 3.12 —4.01 —3.87 —12.25" —8.95
(18.99) (12.12) (9.42) (7.14) (5.11) (4.61)
PC6;¢ —6.66 —27.41 —3.54 —8.92 —5.33 —2.57
(23.29) (17.17) (13.54) (10.71) (8.91) (7.46)
Adj. R? 0.05% 0.39% 0.51% 0.32% 0.35% 0.15%
SLOPE adj. R? 0.11% 0.34% 0.50% 0.34% 0.30% 0.19%
00S R? —0.19% 0.03% 0.14% —0.13% —0.06% —0.13%
SLOPE O0S R? 0.03% 0.24% 0.39% 0.22% 0.18% 0.10%
Single-factor x° 2.63 5.13 2.98 2.51 9.29 4.75
p-value (75.7%) (40.0%) (70.3%) (77.5%) (9.8%) (44.7%)

Panel B. Predicting Next-Day VIX Futures Returns

LEVEL, 6.10 8.21 9.29 9.08 11.78 10.24
(10.22) (9.36) 8.72) (9.06) (10.68) (13.85)
SLOPE, —30.94* —28.70" —17.27 —19.93* —18.35 —9.56
(10.89) (9.47) (8.94) (9.62) (11.13) (11.81)
CURVE; -9.63 —5.43 2.90 8.28 5.54 2454
(11.41) (10.37) (9.89) (10.32) (11.06) (12.95)
PC4, —4.76 —4.65 -3.88 —5.44 -8.18 6.45
(11.04) (10.37) (9.75) (9.96) (12.03) (15.19)
PCS5; ~10.25 -8.23 -8.81 -6.33 ~1.69 —14.43
(9.66) (9.49) (9.19) (9.28) (9.07) (17.57)
PC6; ~11.32 —12.38 ~13.73 —13.48 ~7.00 —4.58
(8.92) (8.36) (7.67) (8.03) (8.13) (11.28)
Adj. R? 0.69% 0.63% 0.36% 0.52% 0.33% 0.52%
SLOPE adj. A? 0.63% 0.58% 0.23% 0.34% 0.27% 0.02%
008 R2 —0.11% —0.09% —0.43% —0.41% —0.79% —1.21%
SLOPE 00S A2 0.41% 0.40% 0.03% 0.11% —0.01% —0.24%
Single-factor x2 3.18 3.79 6.06 5.71 2.99 6.07
p-value (67.3%) (58.0%) (30.0%) (33.5%) (70.2%) (30.0%)

(continued on next page)
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TABLE 4 (continued)
Single-Factor Tests for Conditional Variance Risk Premia

Maturity (months)

1 2 3 6 9 12

Panel C. Predicting Next-Day S&P 500 Straddle Returns

LEVEL; —0.51 1.48 2.92 3.74 2.28 2.37
(9.22) (5.72) (4.61) (3.31) (2.75) (2.60)
SLOPE; —37.19* —29.56™ —28.45™ —21.63* —18.09* —14.88"*
(9.97) (6.26) (5.08) (3.51) (2.96) (2.77)
CURVE; —18.74 —20.08** —17.82** —9.81* —6.54 —3.08
(10.67) (7.05) (5.87) (4.09) (3.40) (3.08)
PC4; 14.34 10.52 7.95 4.52 3.42 3.75
(10.18) (6.31) (5.05) (3.42) (2.90) (2.58)
PC5¢ 3.31 0.20 —0.89 —2.78 —4.03* —3.55*
(6.63) (4.02) (2.97) (2.28) (1.84) (1.76)
PC6;¢ 2.67 —2.35 —0.46 —4.16 —-1.73 —2.23
(8.43) (4.98) (4.23) (3.09) (2.55) (2.37)
Adj. R? 0.44% 1.07% 1.60% 1.91% 1.83% 1.43%
SLOPE adj. R? 0.38% 0.73% 1.14% 1.51% 1.56% 1.27%
00s R? 0.22% 0.80% 1.28% 1.55% 1.45% 1.05%
SLOPE O0S R? 0.30% 0.64% 1.05% 1.41% 1.45% 1.15%
Single-factor x? 5.84 12147 1.77* 10.65 10.03 7.97
p-value (32.2%) (3.2%) (3.8%) (5.9%) (7.4%) (15.8%)

Panel D. Predicting Next-Month S&P 500 Variance Swap Returns

LEVEL; —0.53 —0.84 —0.04 —0.16 0.20 —0.55
(3.50) (2.73) (2.05) (1.24) (1.11) (0.84)
SLOPE; —12.88* —12.47* —11.82* —8.08" —6.71* —4.32"
(4.47) (3.35) (2.71) (1.54) (1.31) (0.95)
CURVE; —=5.77 -3.19 —1.90 —0.86 —0.40 0.19
(4.83) (3.30) (2.30) (1.28) (0.97) (0.96)
PC4; —4.52 —2.82 —0.54 0.75 0.84 0.42
(5.57) (3.91) (2.69) (1.14) (0.95) (0.82)
PC5;¢ 10.26 5.96" 3.63" 1.79 0.38 0.62
(5.59) (2.96) (1.71) (0.94) (0.70) (0.68)
PC6;¢ —5.05 -3.23 —1.78 —0.35 0.15 0.60
(3.79) (2.46) (1.59) (0.85) (0.75) (0.78)
Adj. R? 2.07% 3.96% 6.42% 8.86% 9.61% 4.30%
SLOPE adj. R? 1.02% 2.86% 5.70% 8.36% 9.49% 4.13%
00s R? —1.96% —0.99% 1.11% 3.59% 3.45% 0.70%
SLOPE OOS R? —0.53% 1.09% 3.56% 6.27% 7.23% 2.78%
Single-factor x2 5.39 5.26 5.42 4.51 1.74 2.92
(p-value) (37.0%) (38.5%) (36.7%) (47.9%) (88.4%) (71.2%)

Panel E. Predicting Next-Month VIX Futures Returns

LEVEL, 1.17 1.73 215 2.14 1.99 2.39"
(1.23) (1.24) (1.10) (1.11) (0.94) (0.76)
SLOPE; —6.92" —7.02"* —5.32" —6.22" —5.04" —3.37"
(1.52) (1.34) (1.19) (1.10) (0.94) (0.88)
CURVE, —1.27 —0.87 —1.07 —1.32 —0.63 1.53*
(1.14) (0.98) (0.80) (0.73) 0.71) (0.69)
PC4, —0.56 ~0.01 0.43 0.89 —0.45 0.16
(1.35) (1.14) (0.97) (1.02) (0.94) (0.61)
PCS5; —1.47 —1.18 ~0.55 —0.54 ~0.51 0.17
(1.23) (1.13) (0.87) (0.91) (0.98) (0.79)
PC6; 1.24 1.17 0.63 0.66 0.71 —0.31
(0.98) (0.92) 0.77) (0.73) (0.79) (0.63)
Adj. R2 12.93% 15.32% 13.40% 19.61% 14.11% 10.49%
SLOPE adj. R2 11.44% 13.68% 11.00% 16.45% 11.81% 6.20%
00S R? 1.19% 3.70% 1.06% 6.25% 4.05% 0.72%
SLOPE 00S R? 6.52% 8.72% 4.18% 8.82% 6.76% 3.34%
Single-factor x2 378 5.92 9.68 15.67* 7.07 30.06™
p-value (58.1%) (31.4%) (8.5%) (0.8%) (21.5%) (0.0%)

(continued on next page)
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TABLE 4 (continued)
Single-Factor Tests for Conditional Variance Risk Premia

Maturity (months)

1 2 3 6 9 12

Panel F. Predicting Next-Month S&P 500 Straddle Returns

LEVEL, ~0.90 —0.45 ~0.31 —0.08 -0.38 -0.23
(1.26) (0.90) (0.76) (0.64) (0.47) (0.44)
SLOPE, —6.97™ —4.96™ —4.68™ —3.73" —3.21* 281"
(1.47) (0.89) (0.73) (0.56) (0.46) (0.42)
CURVE, —0.70 —0.90 —0.88 —0.88 —057 —0.45
(1.69) (1.00) (0.75) (0.54) (0.45) (0.40)
PC4; 0.89 0.65 0.57 0.58 0.59 0.69
(1.33) (0.81) (0.70) (0.54) (0.44) (0.38)
PC5; 381" 238" 1.84% 1.04* 0.54 0.40
(1.15) (0.68) (0.53) (0.37) (0.31) (0.29)
PC6; -0.98 -0.70 —0.44 -0.38 —0.04 -0.23
(1.01) (0.62) (0.50) (0.38) (0.30) (0.31)
Adj. R? 5.07% 7.18% 9.92% 12.34% 13.26% 13.34%
SLOPE adj. R? 3.80% 5.56% 8.23% 10.63% 12.06% 11.99%
00S R? 1.62% 3.45% 5.97% 7.76% 8.97% 8.74%
SLOPE 00S R? 2.29% 4.01% 6.67% 8.91% 10.39% 10.23%
Single-factor 16.08* 17.25% 16.79* 13.20* 9.21 9.77
p-value (0.7%) (0.4%) (0.5%) (2.2%) (10.1%) (8.2%)
FIGURE 2

Conditional and Unconditional Straddle Strategy Returns

Figure 2 presents cumulative returns for two trading strategies using constant-maturity Standard & Poor’s (S&P) 500
straddle portfolios. The unconditional strategy sells the 30-day straddle portfolio every day, holds for 1 day, and then
rebalances to the next 30-day portfolio. The daily returns for selling straddles account for the margin requirement, 20%
of the S&P 500 index level. The conditional strategy estimates SLOPE;, the second principal component (PC) of the
VIX term structure, using PC analysis on past data. The strategy buys straddles if SLOPE; is in the bottom quintile of
its historical distribution and sells straddles (with the appropriate margin) otherwise. The gray vertical stripes indicate
periods during which the conditional strategy buys straddles. Because the conditional strategy is purely out of sample,
it requires a training period, and so each strategy’s cumulative returns start at $1 in 2000, meaning the sample contains
3,437 daily observations from 2000 through 2013.

Cumulative Strategy Return ($)

20056 2007 2009 2011 2013

— Conditional Strategy
"""" Unconditional Strategy

C. Economic Significance of SLOPE as a Predictor

Given the results in Table 4, the remainder of my tests treat SLOPE as a
summary of all information in the VIX term structure about variance risk premia
and examine the economic significance, robustness, and incremental power of
SLOPE as a predictor of variance-asset returns. For brevity, I focus on next-day
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variance asset returns, though my results are qualitatively identical for next-month
returns.

I assess the economic significance of the predictability afforded by SLOPE
using two approaches, the first of which is to estimate the performance of an OOS
SLOPE-based trading strategy, as discussed in Section IV.F. The second is to
compute average next-day excess variance asset returns across SLOPE quintiles.
In addition to measuring economic significance, this approach allows me to as-
sess any nonlinearities in the relation between SLOPE and variance asset returns.
Table 5 shows that the difference between high- and low-SLOPE quintiles is sta-
tistically significant for all but the 6-month VIX futures returns, and economically
enormous: between 29 bps and 181 bps per day.’ Furthermore, the relation does
appear to be nonlinear. In quintiles 2-5, SLOPE and variance asset returns are
moderately negatively related. However, the relation becomes much stronger in
quintile 1, for which average returns increase dramatically. This pattern suggests
there are huge intertemporal changes in the loadings of these assets on variance
risk, the price of variance risk, or both.

D. Robustness of SLOPE as a Predictor

A limitation of my analysis is the relatively short 19962013 sample period
featuring a historic financial crisis. To make my results as convincing as possible
given this limitation, I show the predictive relation between SLOPE and variance
asset returns is robust to many alternate specifications. The first alternative spec-
ification is predicting monthly rather than daily returns. Table 4 shows SLOPE
negatively predicts next-month variance asset returns to the exclusion of other
factors in the term structure. Table 6 provides an additional robustness check, as
well as a measure of economic significance, by examining differences in next-
month returns across extreme SLOPE quintiles for 18 variance assets, along with
the next-day return differences for comparison. The economic magnitudes are
large, ranging from —8.25% to —36.67%, and statistically significant at the 1%
level for all 18 test assets.

Another potential concern is that the predictive relation between SLOPE and
variance asset returns is driven by extreme observations of both SLOPE and vari-
ance asset returns during the financial crisis. Figure 1 shows SLOPE occasionally
spikes downward, for example reaching a low almost 10 standard deviations be-
low its mean in 2008. Furthermore, Table 5 shows that variance asset returns fol-
lowing days in the lowest SLOPE quintile are substantially different from those
following days in the other 4 quintiles. It is therefore possible that my main re-
sults are driven entirely by a few days with extremely low SLOPE and abnormally
positive future variance asset returns.

Table 6 alleviates this concern by examining the differences in next-day vari-
ance asset returns across SLOPE quintiles in 2 subsamples: one without the finan-
cial crisis (defined as all of 2008 and 2009) and one without the bottom 5% of days
by SLOPE. In both cases, the magnitude of the predictability afforded by SLOPE

5As a benchmark, Table 2 shows average daily returns for these assets are between 0 bps and 136
bps.
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TABLE 5

Next-Day Variance Asset Returns across SLOPE Quintiles

Table 5 presents average next-day returns for 18 variance-sensitive investments across 5 subsamples of equal size
sorted by SLOPE, the second principal component (PC) of the VIX term structure. Within each subsample, | compute
average next-day excess returns for each variance asset and present the difference between the average in the highest
quintile and the lowest quintile of SLOPE. Panel A presents average next-day returns for synthetic Standard & Poor’s
(S&P) 500 variance swaps, Panel B for VIX futures, and Panel C for at-the-money S&P 500 straddles, all net of the risk-
free rate. Returns are in percentages, and standard errors are in parentheses. * and ** indicate significance at the 5%
and 1% levels, respectively. The sample contains 4,445 daily observations from 1996 through 2013 for variance swaps

and straddles, and 2,375 daily observations from 2004 through 2013 for VIX futures.

Maturity (months)

SLOPE
Quintile 1 2

3

Panel A. Average Next-Day Variance Swap Returns by SLOPE Quintile

1 (Low) —0.25 0.46
(0.51) (0.33)
2 ~1.63 -0.83
(0.50) (0.33)
3 —1.67" —0.77*
(0.50) (0.33)
4 —1.30* —0.70
(0.51) (0.33)
5 (High) —1.96™ —1.35"
(0.51) (0.33)
High - Low —1.70* —1.81**
0.72) (0.47)

0.60*
(0.26)
—0.50
(0.26)
—0.46
(0.26)
-0.36
(0.26)
—1.01*
(0.26)
—1.61%
(0.37)

Panel B. Average Next-Day VIX Futures Returns by SLOPE Quintile

1 (Low) 0.21 0.20
(0.18) (0.17)
2 -0.32 -0.34*
(0.17) (0.17)
3 —0.13 —0.11
(0.17) (0.16)
4 —0.11 -0.14
(0.17) (0.17)
5 (High) —0.62" —0.62"*
(0.18) (0.17)
High - Low —0.83" —0.82"*
(0.25) (0.23)

0.14
(0.15)
—0.31*
(0.15)
—0.09
(0.15)
~0.05
(0.15)
—0.38*
(0.15)

—0.53*
(0.22)

Panel C. Average Next-Day S&P 500 Straddle Returns by SLOPE Quintile

1 (Low) 0.44* 0.42%*
(0.19) (0.11)
2 -0.38" -0.23"
(0.19) (0.12)
3 —0.61* —0.35"*
(0.19) (0.12)
4 -0.43* —0.30"*
(0.19) (0.11)
5 (High) —0.65™ —0.44*
(0.19) (0.11)
High - Low —1.09** —0.86*
(0.27) (0.16)

0.47*
(0.09)
—0.18*
(0.09)
—0.21*
(0.09)
—0.24*
(0.09)
—0.35"
(0.09)
—0.81*
(0.13)

0.44*
(0.18)
—0.27
(0.18)
—0.25
(0.18)
—0.35
(0.18)
—0.58™
(0.18)
—1.01**
(0.25)

0.15
(0.15)
~0.15
(0.15)
0.01
(0.15)
—0.05
(0.15)
—0.37*
(0.15)
—0.52*
(0.21)

0.39**
(0.06)
—0.11
(0.06)
—0.14*
(0.06)
~0.13*
(0.06)
—0.21™
(0.06)
—0.59™
(0.08)

0.38*
(0.15)
—0.22
(0.15)
—0.12
(0.15)
—0.20
(0.15)
—0.45"
(0.15)
—0.83"*
.21

0.18
(0.15)
-0.10
(0.15)
—0.08
(0.15)
—0.03
(0.15)
—0.32*
(0.15)

—0.50*
(0.22)

0.34*
(0.05)
-0.07
(0.05)
—0.10*
(0.05)
—0.11*
(0.05)
—0.16"*
(0.05)
—0.50"*
(0.07)

0.31*
(0.14)
-0.17
(0.14)
—0.02
(0.14)
—0.09
(0.14)
—0.41*
(0.14)
—0.72"
(0.20)

0.05
(0.17)
—0.18
(0.17)
0.07
(0.17)
—0.11
(0.17)
—0.25
(0.17)
~0.29
(0.24)

0.29*
(0.04)
-0.03
(0.04)
—0.09*
(0.04)
—0.06
(0.04)
—0.11*
(0.04)
—0.40**
(0.06)

GZ8000£1060122005/£10L°0L/B1010p//:sdNny

*swR1/2402/610 9bpLquied mmm//:sdiiy Je a|gejieAe ‘asn Jo sw) 40D abpliquie) ay3 03 193[gns ‘€0:10:00 38 £10Z 29d 62 UO ‘7'ST°H'96 :SSaJppe dI 9402/6.10abpliquied mmm//:sd1ay wouy papeojumoq


https://doi.org/10.1017/S0022109017000825
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

2482  Journal of Financial and Quantitative Analysis

is smaller than in the baseline results but remains statistically and economically
significant.

A final concern addressed in Table 6 is that the definition of SLOPE I use for
my main tests is based on principal components analysis of the VIX term structure
over the entire sample, introducing a possible look-ahead bias. Because principal
components analysis is a simple linear rotation of the VIX term structure that
does not use return data, any look-ahead bias is likely to be small. Regardless,
if my interpretation of the second PC as “slope” is correct, exogenous measures
of the term structure’s SLOPE should also predict future variance asset returns.

TABLE 6
Robustness of Variance Asset Returns across SLOPE Quintiles

Table 6 presents average future returns for 18 variance-sensitive investments across quintiles of SLOPE, the second
principal component (PC) of the VIX term structure. | create 5 subsamples of equal size sorted by SLOPE. Within each
subsample, | compute average future excess returns for each variance asset and present the difference between the
average in the highest quintile and the lowest quintile of SLOPE. Panel A presents differences in average returns for
synthetic Standard & Poor’s (S&P) 500 variance swaps across SLOPE quintiles, Panel B for VIX futures, and Panel C
for at-the-money S&P 500 straddles, all net of the risk-free rate. For each asset, | present the baseline next-day return
differences, next-month return differences, and next-day return differences with the crisis (Jan. 1, 2008-Dec. 31, 2009)
removed, the smallest 5% of SLOPE days removed, and SLOPE defined as VIX?N—V\X?J. Returns are in percentages,
and standard errors are in parentheses. * and ** indicate significance at the 5% and 1% levels, respectively.

Maturity (months)

Variation 1 2 3 6 9 12

Panel A. Difference in Variance Swap Returns across Extreme SLOPE Quintiles

Baseline —1.70* —1.81** —1.61** —1.01** —0.83** —0.72**
(0.72) (0.47) (0.37) (0.25) (0.21) (0.20)

Next-month returns —36.67* —36.02** —32.51** —21.61** —17.29** —12.60**
(14.36) (10.55) (8.16) (4.50) (3.81) (3.55)

Crisis removed -1.25 —1.44* —1.33** —0.87** —0.82** -0.77**
(0.76) (0.48) (0.39) (0.26) (0.21) (0.21)

Bottom 5% SLOPE removed —1.56* —1.60** —1.30"* —0.88** —0.72** —0.60**
(0.72) (0.47) (0.37) (0.25) (0.20) (0.20)

SLOPE=VIX3, - VIX} -0.53 —1.08* —1.18* —0.71** —0.60** —0.58**
(0.71) (0.47) (0.37) (0.25) (0.20) (0.20)

Panel B. Difference in VIX Futures Returns across Extreme SLOPE Quintiles

Baseline —0.83** —0.82** —0.53* —0.52* —0.50* —0.29
(0.25) (0.23) (0.22) (0.21) (0.22) (0.24)
Next-month returns —21.10** —20.90** —15.25** —16.63** —13.74** —12.07**
(5.44) (5.11) (4.44) (4.28) (3.95) (3.36)
Crisis removed —0.63* —0.67* —0.48" —0.41 —0.32 —0.36
(0.28) (0.27) (0.24) (0.23) (0.22) (0.23)
Bottom 5% SLOPE removed -0.61* —0.60* —0.36 -0.37 -0.23 -0.15
(0.24) (0.23) (0.22) (0.21) (0.21) (0.23)
SLOPE=VIXZ, - VIX} —0.66** —0.75** —0.51* —0.58** —0.57** —0.71*
(0.24) (0.23) (0.21) (0.21) (0.21) (0.24)

Panel C. Difference in VIX Futures Returns across Extreme SLOPE Quintiles

Baseline —1.09** —0.86** —0.81** —0.59** —0.50** —0.40**
(0.27) (0.16) (0.13) (0.08) (0.07) (0.06)
Next-month returns —21.13** —15.40** —14.10** —11.43** —9.67** —8.25*
(4.83) (3.19) (2.56) (1.93) (1.49) (1.34)
Crisis removed —0.94** —0.73** —0.73** -0.57* —0.47** —0.35"*
(0.29) (0.17) (0.13) (0.09) (0.07) (0.07)
Bottom 5% SLOPE removed —0.92** —0.70** —0.66** —0.48** —0.40** —0.32**
(0.28) (0.16) (0.12) (0.08) (0.07) (0.06)
SLOPE=VIXZ, - VIX} -0.57* —0.51** —0.52** —0.33** —0.29** —0.25"*

(0.27) (0.16) (0.12) (0.08) (0.07) (0.06)
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Table 6 shows that sorting the sample by one such alternate measure, VIX}, —
VIX%, results in statistically significant but muted predictability.®

E. SLOPE as an Incremental Predictor

As discussed in Section II, the related literature documents other timely in-
dicators for variance risk premia. Table 7 shows the ability of SLOPE to predict
future variance asset returns is incremental to these other indicators and cannot
be explained by mismeasurement or liquidity. As in Table 4, I scale each inde-
pendent variable to have standard deviation of 1 to make economic magnitudes
easier to interpret. [ detail each result in turn, but the important conclusion is that
SLOPE remains a statistically and economically significant predictor of next-day
returns for all but 2 of the assets it predicts in Table 4. Even for the few assets
for which SLOPE does not incrementally predict future returns, the coefficient
remains negative and economically significant.

The first control variable is the day ¢ variance asset return r;,, which ad-
dresses the concern that my results are driven by measurement errors. This con-
cern arises because both SLOPE and time ¢ variance swap and straddle prices are
computed from the same potentially noisy option prices, making it possible that
measurement error in the option prices drives the predictability I document. This
possibility is mitigated by the fact that my results hold when predicting returns on
day ¢+ 2 using SLOPE on day ¢,” and for VIX futures that are traded separately
and therefore not subject to the same measurement error as SLOPE. Nevertheless,
I address this possibility by controlling for r;, in Table 7. To the extent measure-
ment errors drive my results, there should be negative autocorrelation in variance
asset returns and the predictive power of SLOPE should disappear with after con-
trolling for r;,. Controlling for r;, also accounts for any compensation liquidity
providers receive in the form of short-term reversals in variance asset returns. Ta-
ble 7 shows that past returns are negative and significant incremental predictors
for only 3 of 18 test assets, indicating that measurement error and short-term re-
versal are not significant for these assets.

The second control variable in Table 7 is CRASH, ,,,, an indicator for
whether there was a “crash” in the S&P 500 over the 21 trading days ending
with ¢. I define a “crash” as a day with excess market returns in the bottom 1% of
my sample, —3.36% or worse. Variance risk premia could be larger after market
crashes because the risk aversion of traders increases, because the probability of
subsequent crashes increases, or a combination of the two (see Todorov (2010),
Ait-Sahalia et al. (2015)). The results in Table 7 indicate there is no significant
relation between CRASH, _,,, and future variance asset returns incremental to the
other controls. If anything, future variance asset returns are higher following mar-
ket crashes, indicating the magnitude of variance risk premia actually decreases.

®This exogenous SLOPE definition is likely less effective because it is —68% correlated with the
LEVEL of the term structure, which is unrelated to variance asset returns. The negative correlation is
due to mean reversion in volatility, which makes the term structure downward sloping when its level
is high. A more effective alternative is to sort by 2VIXj,, — VIX] ,, which is much less correlated with
LEVEL.

"Results are available from the author.
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The third control variable in Table 7 is VIX],. Although the single-factor
tests in Table 4 support the notion that SLOPE summarizes all relevant informa-
tion in the VIX term structure, they assess only whether the term structure adds
predictability to SLOPE without controlling for any other factors. Given thestrong

TABLE 7
Slope as an Incremental Predictor of Variance Asset Returns

Table 7 tests whether SLOPE predicts variance asset returns incrementally to a variety of controls. For each of 18 variance
assets, | regress next-day excess returns r; ;1 on 8 potential predictors: SLOPE,, the second principal component of the
VIXterm structure; r; ¢, the day t excess return of the variance asset; CRASH;_x, an indicator for whether excess market
returns were in the bottom 1% of the entire sample on 1 of the prior 21 days; \/IXf‘t; \/IXf‘, —]E,(F(Vfﬂ), implied minus
expected variance; SP_SKEW,, the option-implied 30-day skewness of the Standard & Poor’s (S&P) 500 index; NOISE;,
the illiquidity measure from Hu, Pan, and Wang (2013); and DEALER_LEVERAGE; (x1072), the most recent ratio of
assets to equity for the aggregate broker-dealer sector, as reported in Federal Reserve Flow of Funds, Table L.128. All
predictors are scaled to have a standard deviation of 1 except for CRASH;_» . Panel A tests the incremental predictability
of SLOPE for synthetic S&P 500 variance swap returns, Panel B for VIX futures returns, and Panel C for at-the-money S&P
500 straddle returns, all net of the risk-free rate. Returns are in percentages, and standard errors are in parentheses. *
and ** indicate significance at the 5% and 1% levels, respectively.

Maturity (months)

Predictor 1 2 3 6 9 12

Panel A. Predicting Next-Day S&P 500 Variance Swap Returns

SLOPE, —42.87 —58.21* —55.23 —28.48" —22.44* —24.27*
(32.82) (22.91) (17.39) (11.80) (10.37) (10.41)
e —72.91™ —14.65 —5.44 13.43 6.54 —2.06
(25.82) (19.90) (16.21) (11.81) (9.02) (9.27)
CRASH; 20, 227.58 139.97 79.32 43.77 30.54 24.97
(141.96) (94.93) (71.53) (47.44) (37.33) (35.91)
VX, —43.40 —34.68 —456 10.56 7.96 —8.87
(62.82) (44.48) (32.66) (20.21) (16.03) (14.49)
VIXE , —E(RVZ,) —93.25" —73.08* —60.06* —53.70 —37.20 ~10.71
(34.76) (23.01) (18.92) (15.05) (13.22) (10.52)
SP_SKEW, 27.36 2.69 —2.09 -9.93 -8.71 -10.12
(27.50) (18.04) (13.80) (9.55) (7.78) (7.26)
NOISE, 24.78 44.05 30.00 15.13 9.55 13.57
(39.59) (26.82) (19.98) (15.81) (13.28) (13.18)
DEALER_LEVERAGE, 60.59 24.13 8.69 3.18 467 ~1.78
(69.14) (49.64) (34.46) (19.31) (15.88) (14.85)
Adj. R? 0.99% 1.10% 1.02% 1.00% 0.76% 0.22%

Panel B. Predicting Next-Day VIX Futures Returns

SLOPE, —28.35* —2455* ~12.90 ~17.00 —20.34 ~16.45
(12.98) (12.31) (12.51) (12.74) (11.99) (10.68)
fid -3.14 -357 —4.74 ~10.19 —40.52" —48.60™
(9.82) (9.93) (9.60) (9.39) (10.93) (15.22)
CRASH; 20, 65.90 51.15 33.26 36.53 30.72 47.41
(51.10) (45.99) (40.05) (38.41) (46.00) (35.55)
VIX, ~0.89 465 10.42 15.30 9.83 -8.51
(24.97) (22.59) (17.76) (17.31) (18.43) (22.76)
VIXE , —E(RVZ,,) —35.98" -38.39" —38.29" —38.25" —15.92 —33.52%
(17.54) (16.09) (11.89) (8.80) (9.44) (10.93)
SP_SKEW, -13.76 -10.94 —15.61* ~13.05 -7.97 ~9.86
(8.74) (8.52) (7.85) (7.81) (7.54) (7.27)
NOISE, 22.19 23.30 24.71 19.58 15.58 52.85*
(20.55) (18.96) (16.88) (17.83) (17.18) (17.36)
DEALER_LEVERAGE, 1.62 0.91 2.20 -1.98 0.31 —12.07
(28.49) (26.12) (24.97) (26.11) (24.55) (17.10)
Adj. R? 1.50% 1.49% 1.43% 1.58% 2.20% 2.87%

(continued on next page)
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TABLE 7 (continued)
Slope as an Incremental Predictor of Variance Asset Returns

Maturity (months)

Predictor 1 2 3 6 9 12

Panel C. Predicting Next-Day S&P 500 Straddle Returns

SLOPE, -38.88™ —27.78" —26.21* —19.05™* —14.81* —11.26™
(11.20) (7.07) (5.44) (3.90) (3.08) (2.79)
hid ~11.10 7.04 7.74 9.69* 11.76* 10.05**
(17.02) (10.03) (6.91) (4.15) (3.64) (3.08)
CRASH;_20¢ 69.74 34.64 24.44 15.74 4.95 0.12
(48.22) (30.02) (23.94) (16.13) (13.16) (11.36)
VIXE, 1.20 10.82 12.52 13.53 13.00* 14.68™
(25.09) (15.55) (11.83) (7.99) (6.18) (5.54)
VIXE , —,(RVZ,,) -33.78" —20.56 ~14.30 —9.81 -7.30 -6.85
(16.43) (10.66) (8.34) (6.02) (4.93) (4.64)
SP_SKEW, 0.56 ~1.73 —1.42 —2.87 —261 —235
(10.39) (5.99) (4.67) (3.22) (2.61) (2.30)
NOISE, 13.45 1.25 —1.37 —4.31 -6.93 —8.86*
(13.45) (8.24) (6.59) (5.00) (4.12) (3.85)
DEALER_LEVERAGE; ~0.34 —2.72 —456 —429 —2.16 —0.77
(19.46) (11.81) (8.53) (5.34) (4.09) (3.67)
Adj. R? 0.68% 0.98% 1.37% 2.07% 2.40% 2.12%

role VIX; plays in pricing across many markets, the importance of the level of
volatility in most asset pricing models, and the time-varying correlation between
LEVEL and SLOPE in Figure 1, it is possible that VIXit has incremental infor-
mation after controlling for indicators outside the VIX term structure. Table 7
shows this is not the case, as VIXfJ is an insignificant or incrementally positive
predictor of variance asset returns.

I also control for the difference between option-implied and expected real-
ized variance, VIX], —E,(RV?, ), in Table 7. As discussed above, Bollerslev et al.
(2009) and Drechsler and Yaron (2011) use implied minus expected variance as
an ex ante measure for conditional variance risk premia. I follow Drechsler and
Yaron and use the fitted value from a full-sample time-series regression of RV?,
on RV? and VIX], as a proxy for E, (RVZ,,)." This measure uses information
outside the VIX term structure, past realized S&P 500 volatility, and therefore
could provide information about the variance risk premium that is incremental to
SLOPE. Consistent with this hypothesis, I find that VIX%Y, —E,(RV,,) negatively
predicts future variance asset returns incremental to SLOPE for 11 of 18 test as-
sets. This implies that when option-implied variance is abnormally higher than
expected variance, variance risk premia are larger and therefore variance assets
have particularly negative abnormal returns.

Kozhan, Neuberger, and Schneider (2013) show that a large part of uncon-
ditional variance risk premia is a reflection of a skew risk premia. To rule out
the possibility that SLOPE’s relation to variance risk premia is due to its being
correlated with the conditional skewness of the S&P 500, I add model-free im-
plied skewness as a control variable, estimated as in Kozhan et al. The results in

Table 7 indicate conditional S&P 500 skewness does not predict future variance

8Also following Drechsler and Yaron (2011), I estimate RV from realized 5-minute S&P 500
futures returns and annualize it to be comparable to VIX>.
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asset returns incremental to the other indicators for most test assets. This alone
does not contradict the results in Kozhan et al. because I study conditional, rather
than unconditional, variance risk premia.

To rule out the possibility that SLOPE’s relation to variance risk premia is
due to its being correlated with aggregate liquidity levels, I include the Hu et al.
(2013) NOISE measure for illiquidity as a control variable. NOISE, based on the
noise in the Treasury yield curve, is more likely to be related to SLOPE than other
aggregate liquidity proxies because it is also a daily measure and constructed from
a term structure of asset prices. Table 7 shows that NOISE plays a small roll in
predicting variance risk premia incremental to the other controls, being slightly
positive but statistically insignificant for most assets.

Barras and Malkhozov (2016) argue variance risk premia are larger when
intermediaries’ risk-bearing capacity is abnormally low. The primary proxy in
Barras and Malkhozov for intermediaries’ risk-bearing capacity is the aggregate
leverage (assets divided by equity) of broker-dealers available quarterly in data
from the Federal Reserve Flow of Funds, Table L.128. To assess whether the
relation between SLOPE and variance risk premia is driven by intermediaries’
risk-bearing capacity, I add a final control to Table 7: DEALER_LEVERAGE,,
the most recent leverage ratio of broker-dealers as of time ¢. I find no significant
relation between DEALER _LEVERAGE, and future variance asset returns incre-
mental to the other controls.

Several untabulated robustness checks are worth mentioning. The single-
factor tests in Table 4 yield identical, in some cases stronger, results if tested by
regressing next-day variance asset returns on the 6 components of the VIX term
structure without first rotating into PCs. The predictability documented in Table 7
is robust to winsorizing SLOPE at the 1% or 5% levels, using quintiles of SLOPE,
and using alternate geometric definitions of SLOPE. The results of these analyses
are available from the author.

F. OOS Predictive Performance of SLOPE

A natural question is whether SLOPE performs well as an OOS predictor of
variance asset returns. Goyal and Welch (2008) argue that OOS performance pro-
vides an additional falsifiable prediction of the no-predictability hypothesis and an
indicator of the economic value of the predictor to real investors. I assess the OOS
performance of SLOPE using both regression and trading strategy approaches. As
described previously, Table 4 presents OOS R?s for both the restricted model that
predicts variance asset returns using only SLOPE and the unrestricted model that
uses the whole VIX term structure. The OOS R?s afforded by SLOPE in Table 4
are positive in 33 of 36 cases for the univariate SLOPE regressions. Furthermore,
although mechanically smaller than the in-sample R?, in most cases the two are
close, indicating SLOPE’s predictability is stable over time and not driven by
in-sample overfitting. The OOS R? for the unrestricted multivariate model, how-
ever, is substantially lower than for both the OOS R? offered by SLOPE and the
in-sample R? in the unrestricted model. The unrestricted model performs poorly
OOS because the 6 highly colinear predictors are more prone to overfitting than
SLOPE alone.
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Although the OOS R? in Table 4 provides another rejection of the no-
predictability null, a trading strategy approach is better suited to measure the eco-
nomic value to investors of SLOPE as a predictor. Figure 2 presents cumulative
returns for two trading strategies using S&P 500 straddles. The first uncondition-
ally sells S&P 500 straddles with a constant maturity of 30 days by shorting the
straddle portfolio I use in my main tests. When shorting straddles, Regulation T
requires the proceeds, along with 20% of the index value, be posted as margin. |
therefore compute short-straddle returns as:

16) suoxtsmappe_ STRADDLE, — STRADDLE, .
o 0.2 x SP500,

As documented in Coval and Shumway (2001), average straddle returns are nega-
tive, and so the unconditional strategy in Figure 2 results in a substantial positive
cumulative return.

The second strategy in Figure 2 is an OOS conditional strategy using SLOPE
as an indicator for whether to buy or sell straddles. Specifically, for each day
following the 1996-1999 training period, I use the following procedure:

1) Compute SLOPE, using principal components analysis on VIX term struc-
ture data from the beginning of the sample through .

ii) If SLOPE, is in the bottom quintile of its historical distribution, buy strad-
dles at ¢ and sell them at ¢ + 1. Otherwise, short straddles at t and buy them
back atr +1.

Figure 2 presents the cumulative returns of this conditional strategy, which
outperforms the unconditional strategy by a factor of 4.8 over the 14-year win-
dow, 11.9% per year.’ This additional performance comes from days, highlighted
in gray in Figure 2, on which the conditional strategy deviates from the uncondi-
tional strategy and buys (rather than sells) straddles. A substantial portfolio of the
OOS improvement comes from late 2008, when the conditional strategy was long
straddles and markets crashed. However, as discussed above, the predictability
afforded by SLOPE is robust to removing 2008 and 2009 from the sample.

G. Empirical Patterns for Future Work to Explain

The contribution of this article is to show that a single factor, SLOPE, sum-
marizes all information about variance risk premia in the VIX term structure and
is a significant and robust predictor of variance asset returns across all maturities.
In doing so, my results provide three puzzling empirical patterns for future work
on variance risk premia to explain.

The first puzzling empirical pattern is the insignificant relation between
LEVEL and variance risk premia for all maturities. Most models, by contrast,
predict that variance risk premia are larger (i.e., more negative) when variance is
higher. The second is the direction of the relation between SLOPE and variance
risk premia for all maturities. The fact that unconditional variance risk premia
are higher for shorter maturities, as documented in Dew-Becker et al. (2017) and

°T compute the returns of both strategies using midpoints of the bid—ask spread, which can be
substantial in the options market, meaning they overstate returns available to real-time investors.
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in Table 2, suggests that variance risk premia disproportionately affect short-term
VIX, which would mean that when variance risk premia are large, short-term VIX
should be higher than long-term VIX, making the term structure downward slop-
ing. Instead, my results indicate that variance risk premia are large when short-
term VIX is low relative to long-term VIX.

A final puzzling empirical pattern is the magnitude of the predictability af-
forded by SLOPE, as documented in Section IV.C. The magnitude of the pre-
dictability is so strong that in the lowest SLOPE quintile, Table 5 shows 17 of
the 18 assets have positive abnormal returns, 10 of which are statistically signifi-
cant. Explaining these results requires intertemporal changes in either the assets’
exposure to variance risk or the price of variance risk so substantial they occa-
sionally change the sign of variance risk premia.

V. Conclusion

Changes in the shape of the VIX term structure convey information about
time-varying variance risk premia rather than expected changes in VIX, a rejec-
tion of the expectations hypothesis. Using daily returns of synthetic S&P variance
swaps, VIX futures, and S&P 500 straddles for different maturities, I show that
a single factor, SLOPE, summarizes all information in the VIX term structure
about variance risk premia. SLOPE predicts returns for all maturities and to the
exclusion of the rest of the term structure. The predictability is economically sig-
nificant, robust, and incremental to other predictors from the literature.

Appendix. Construction of Variance Asset Returns

Carr and Madan (1998) show the VIX® index approximates the price of a variance
swap traded at time ¢ and maturing at time 7+ 7. Because options expiring exactly T
months from ¢ are not always traded, the VIX is calculated using a linear interpolation
between variance swap rates for the two nearest expiration dates to 7. VIX* without annu-
alization, an estimate of the variance swap price at time ¢, is therefore:

A T-S, AK;
A-1 ; = OPTION,(K;t+ S
(A-1) Pur S, — S, 2,(: K2 ( +35)

S, —T <« AK
—_OPTION,(K; 1+ 5,),
) XK: K? (Kit45)

where OPTION, (K ; t + ) is the price at ¢ of the option with strike K and expiration date
t+ S that is out of the money at time 7, AK is the difference between K and the nearest
strike price, and S, <T < S, are the two nearest expiration dates to 7."

Note that equation (A-1) is the price of a specific, tradable, portfolio of out-of-the-
money options with times to expiration equal to S, and S,. Therefore, the return of a vari-
ance swap from day 7 to day 7 + 1 can be approximated by the return of the day ¢ replicating

19See https://www.cboe.com/micro/vix/vixwhite.pdf for details on how the set of strikes K is
selected.
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portfolio:
VAR SWAP
T.t+1

T =51 AK; S$—T AK
Tk (55, g2 OPTIONii(Kir 450+ =2 OPTION, ;1 (K: 1+ $)

S—S; K2 1

T — S AK; S —T AK
>k OPTION(K; t + S1)+ ) FOPTION,(K;I—{—SQ)

S,—S K? S-S
=Y wia(K) - AN 14 S+ wa (K) - r2TONK 1+ 82),
K
T =50 AK prioN, (K1 + §1) 27T AK (oTION, (K 1+ $)
S —S; K2 A S-S K2 it e
wi (K)=22==1 R wp(K) = 2221 ~ :
piT pr1

where OPTION,(K; t 4 §) is the price at ¢ of the option with strike K and expiration date
¢+ S that is out of the money at time ¢, and

POPTION(R- 4 4 §) = OPTION, . (K;t+ S) B
- OPTION, (K7 +5)

I compute the returns for each constant maturity VIX futures strategy using:

T -5, S, —T
VIX_FUT,, (t+S)+ VIX_FUT,, (t+ S,)
7 VIXFUT — 2 Sl Sz — Sl -1
Tt+1 T — Sl Sz —-T ’
VIX_FUT, (r + S,) + VIX_FUT, ( + S,)
N N

where VIX_FUT, (¢ +S) is the day ¢ price of a VIX futures contract with maturity date
t+ S, and S, and S, are the two closest times to maturity to the target time to maturity 7.
I compute the returns for each constant maturity S&P straddle strategy using:

T-S S —T
L STRADDLE, 41(f + S) + —>——STRADDLE, | (t + S5)
A.2) pSTRADDLE _ 52— Si S»— 81 _q
( ) rT,[+1 - T—Sl S2—T 5
STRADDLE,(t + S1) + STRADDLE,(t + S>)
$H—5 S — 8

where STRADDLE, (¢ + S) is the day ¢ price of an at-the-money straddle with expiration
date 4+ S, and S, and S, are the two closest times to expiration to the target 7.

References

Adrian, T., and J. Rosenberg. “Stock Returns and Volatility: Pricing the Short-Run and Long-Run
Components of Market Risk.” Journal of Finance, 63 (2008), 2997-3030.

Ait-Sahalia, Y.; M. Karaman; and L. Mancini. “The Term Structure of Equity and Variance Risk Pre-
mia.” Working Paper, Princeton University (2015).

Ang, A.; R. J. Hodrick; Y. Xing; and X. Zhang. “The Cross-Section of Volatility and Expected
Returns.” Journal of Finance, 61 (2006), 259-299.

Bakshi, G., and N. Kapadia. “Delta-Hedged Hains and the Negative Market Volatility Risk Premium.”
Review of Financial Studies, 16 (2003), 527-566.

Bakshi, G., and D. Madan. “A Theory of Volatility Spreads.” Management Science, 52 (2006),
1945-1956.

Bakshi, G.; G. Panayotov; and G. Skoulakis. “Improving the Predictability of Real Economic Activity
and Asset Returns with Forward Variances Inferred from Option Portfolios.” Journal of Financial
Economics, 100 (2011), 475-495.

Barras, L., and A. Malkhozov. “Does Variance Risk Have Two Prices? Evidence from the Equity and
Option Markets.” Journal of Financial Economics, 121 (2016), 79-92.

Bekaert, G., and M. Hoerova. “The VIX, the Variance Premium and Stock Market Volatility.” Journal
of Econometrics, 183 (2014), 181-192.

GZ8000£1060122005/£10L°0L/B1010p//:sdNny

*swR1/2402/610 9bpLquied mmm//:sdiiy Je a|gejieAe ‘asn Jo sw) 40D abpliquie) ay3 03 193[gns ‘€0:10:00 38 £10Z 29d 62 UO ‘7'ST°H'96 :SSaJppe dI 9402/6.10abpliquied mmm//:sd1ay wouy papeojumoq


https://doi.org/10.1017/S0022109017000825
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

2490 Journal of Financial and Quantitative Analysis

Black, F., and M. Scholes. “The Pricing of Options and Corporate Liabilities.” Journal of Political
Economy, 81 (1973), 637-654.

Bollerslev, T.; G. Tauchen; and H. Zhou. “Expected Stock Returns and Variance Risk Premia.” Review
of Financial Studies, 22 (2009), 4463—-4492.

Breeden, D. T., and R. H. Litzenberger. “Prices of State-Contingent Claims Implicit in Option Prices.”
Journal of Business, 51 (1978), 621-651.

Broadie, M.; M. Chernov; and M. Johannes. “Understanding Index Option Returns.” Review of
Financial Studies, 22 (2009), 4493-4529.

Campbell, J. Y.; S. Giglio; C. Polk; and R. Turley. “An Intertemporal CAPM with Stochastic Volatil-
ity.” Journal of Financial Economics, forthcoming (2017).

Carr, P,, and D. Madan. “Towards a Theory of Volatility Trading.” In Volatility, Vol. I, R. Jarrow, ed.
Ann Arbor, MI: Risk Books (1998), 417-427.

Carr, P., and L. Wu. “Variance Risk Premiums.” Review of Financial Studies, 22 (2009), 1311-1341.

Christoffersen, P.; S. Heston; and K. Jacobs. “The Shape and Term Structure of the Index Option
Smirk: Why Multifactor Stochastic Volatility Models Work So Well.” Management Science, 55
(2009), 1914-1932.

Christoffersen, P.; K. Jacobs; C. Ornthanalai; and Y. Wang. “Option Valuation with Long-Run and
Short-Run Volatility Components.” Journal of Financial Economics, 90 (2008), 272-297.

Cochrane, J. H., and M. Piazzesi. “Bond Risk Premia.” American Economic Review, 95 (2005),
138-160.

Corradi, V.; W. Distaso; and A. Mele. “Macroeconomic Determinants of Stock Volatility and Volatility
Premiums.” Journal of Monetary Economics, 60 (2013), 203-220.

Coval, J. D., and T. Shumway. “Expected Option Returns.” Journal of Finance, 56 (2001), 983—-1009.

Dew-Becker, I.; S. Giglio; A. Le; and M. Rodriguez. “The Price of Variance Risk.” Journal of
Financial Economics, 123 (2017), 225-250.

Drechsler, 1., and A. Yaron. “What’s Vol Got to Do with It.” Review of Financial Studies, 24 (2011),
1-45.

Egloff, D.; M. Leippold; and L. Wu. “The Term Structure of Variance Swap Rates and Optimal
Variance Swap Investments.” Journal of Financial and Quantitative Analysis, 45 (2010),
1279-1310.

Eraker, B., and Y. Wu. “Explaining the Negative Returns to VIX Futures and ETNs: An Equilibrium
Approach.” Working Paper, University of Wisconsin (2014).

Feunou, B.; J.-S. Fontaine; A. Taamouti; and R. Tédongap. “Risk Premium, Variance Premium, and
the Maturity Structure of Uncertainty.” Review of Finance, 18 (2014), 219-269.

Filipovié, D.; E. Gourier; and L. Mancini. “Quadratic Variance Swap Models.” Journal of Financial
Economics, 119 (2016), 44-68.

Garleanu, N.; L. H. Pedersen; and A. M. Poteshman. “Demand-Based Option Pricing.” Review of
Financial Studies, 22 (2009), 4259-4299.

Goyal, A., and I. Welch. “A Comprehensive Look at the Empirical Performance of Equity Premium
Prediction.” Review of Financial Studies, 21 (2008), 1455-1508.

Heston, S. L. “A Closed-Form Solution for Options with Stochastic Volatility with Applications to
Bond and Currency Options.” Review of Financial Studies, 6 (1993), 327-343.

Hu, G. X.; J. Pan; and J. Wang. “Noise as Information for Illiquidity.” Journal of Finance, 68 (2013),
2341-2382.

Kozhan, R.; A. Neuberger; and P. Schneider. “The Skew Risk Premium in the Equity Index Market.”
Review of Financial Studies, 26 (2013), 2174-2203.

Martin, I. “Simple Variance Swaps.” Working Paper, London School of Economics (2013).

Mencia, J., and E. Sentana. “Valuation of VIX Derivatives.” Journal of Financial Economics, 108
(2013), 367-391.

Merton, R. C. “An Intertemporal Capital Asset Pricing Model.” Econometrica, 41 (1973), 867-887.

Mixon, S. “The Implied Volatility Term Structure of Stock Index Options.” Journal of Empirical
Finance, 14 (2007), 333-354.

Neuberger, A. “The Log Contract.” Journal of Portfolio Management, 20 (1994), 74-80.

Newey, W. K., and K. D. West. “A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorre-
lation Consistent Covariance Matrix.” Econometrica, 55 (1987), 703-708.

Todorov, V. “Variance Risk-Premium Dynamics: The Role of Jumps.” Review of Financial Studies, 23
(2010), 345-383.

GZ8000£1060122005/£10L°0L/B1010p//:sdNny

*swR1/2402/610 9bpLquied mmm//:sdiiy Je a|gejieAe ‘asn Jo sw) 40D abpliquie) ay3 03 193[gns ‘€0:10:00 38 £10Z 29d 62 UO ‘7'ST°H'96 :SSaJppe dI 9402/6.10abpliquied mmm//:sd1ay wouy papeojumoq


https://doi.org/10.1017/S0022109017000825
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

	Risk Premia and the VIX Term Structure
	Introduction
	Relation to Prior Research
	Constructing the VIX Term Structure and Variance Asset Returns
	VIX Term Structure
	Variance-Sensitive Asset Returns

	Empirical Results
	Expectations Hypothesis
	Single-Factor Tests
	Economic Significance of SLOPE as a Predictor
	Robustness of SLOPE as a Predictor
	SLOPE as an Incremental Predictor
	OOS Predictive Performance of SLOPE
	Empirical Patterns for Future Work to Explain

	Conclusion
	Appendix. Construction of Variance Asset Returns
	References


